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Abstract

The geometrical analysis of deformation surveys deals with the determination of the
geometrical status of a deformable body — the chaage of its shape and dimensions. Since
the deformations are usually very small and at the margin of measuring errors, very careful
analysis and statistical testing of the results are required. The deformation of a body is
fully described in three-dimensional space if 9 deformation parameters (6 strain
components and 3 differential rotation components) can be determined at each point.
These deformation parameters can be calculated from the well-known strain-displacement
relationships if a displacement function representing the deformation body is known.

A methodology for finding the "best” fitting displacement function has been
developed by the authors, and is known as the UNB Generalized Method. The
Method consists of three basic processes: preliminary identification of deformation models
through a trend analysis, estimation of the deformation parameters through a least-squares
fitting of selected displacement functions to repeated deformation observations, and the
final selection of the “best" model based on the diagnostic checking of the model and
statistical testing of individual deformation parameters. The Method is applicable to any
type of geometrical analysis, both in space and in time, including the detection of an
unstable area and the determination of strain components and relative rigid body motions
within a deformed object. It allows utilization of any type of surveying data and
geotechnical measurements with configuration defects in the observation scheme.

Computer program DEFNAN helps to apply the generalized method in practice. Examples
of its applications are presented. :

*Visiting Professor from Wuhan Technical University of Surveying and Mapping, P.R. of
China (Honorary Research Associate at UNB).



I. Introduction

Expanding exploitation of mineral resources under populated areas, rapid progress
in the development of large and sensitive engineering constructions, and growing interest
in the study of earth crustal movements have all put new demands on the accuracy, survey
methodology, and analysis of deformation measurements.

The instruments and methods of conventional geodetic and photogrammetric
surveys, though still useful in collecting global deformation data, cannot satisfy all the
requirements of contemporary deformation monitoring. Typical requirements are
accuracies in the order of 10-® and 1077, continuous mounitoring with automatic recording,
and telemetric data acquisition. Special instrumentation for the detection of deformations,
for example, precision tiltmeters, inverted pendula, strainmeters, extensometers,
mechanical and laser alignment equipment, hydrostatic levels and interferometers, is being
used in structural, geotechnical, tectonic, and rock mechanics monitoring.

In order to provide a strong basis of data for any deformation analysis, the surveyor
must empioy new technologies and must be able to integrate all types of measurements into
a comprehensive "network” of observables. This compels the surveyor to have a good
understanding of the purpose and the methods of analysis of deformation surveys. )

The analysis of deformations deals usually with very small deformation quantities
which are at the margin of measuring errors. Therefore, a very careful accuracy analysis
and statistical testing of the results are required in order to make proper decisions on the
acceptance of the deformation models.

Thus the survey methods, their design and the analysis of the deformation surveys
become very complex. Till now, surveyors have been little, or not at all, involved in the
deformation interpretation which usually has been done by other specialists. Emphasis
must be placed on the danger inherent when the surveyor, whose realm is measurement
processes and the associated errors and statistical considerations, is not able to direct the
interpretation of the data. Often severe misinterpretation regarding a phenomena can occur
if due regard for the "quality” of the data is not given. Certainly no specialist should be the
sole analyst, and it is the interaction of the survey engineer with the data user that should
be encouraged. Thus a strong interaction between the survey engineer and other specialists
who are in charge of the geotéchnical, construction, or geophysical project is necessary -
during the entire life of a project.

In the past few years, more attention has been paid to the analysis of deformation
surveys than ever before. In 1978, Commission 6 of the Fédération Internationale des

Géometres (FIG) created an ad hoc committece on the analysis of deformation



measurements under the chairmanship of Dr. Chrzanowski, The main task of the

committee has been to compare different approaches to deformation analysis using the

same measuring data with an ultimate goal to prepare a proposal for guidelines and

specifications for all aspects of deformation analysis, including studies in the following

items:

(1)  optimization and design of monitoring networks with geodetic and non-geodetic
observables;

(2)  assessment of the observation data, detection of outliers, and systematic errors;

(3) geometrical analysis of deformations;

{4) physical interpretation of deformations, e.g., establishment of load-deformation
relationships.

During the period 1978-1982, membership in the committee was limited to only five
research centres in order to avoid difficulties and delays in the exchange of information and
organization of the working meetings. The five groups, called by the names of their
location (with the names of the original chief investigators in parentheses) were: Delft (J.
Kok), Fredericton (A. Chrzanowski), Hannover (W. Niemeier and H. Pelzer), Karlsruhe
(B. Heck and J. Van Mierlo), and Munich (W. Welsch). After the third FIG symposium
on deformation surveys, which was held in Budapest in 1982, 14 more groups joined the
committee. A full list of the member groups was given in Chrzanowski and Secord
[1983]. At the 1986 XVIII FIG Congress in Toronto, a general theory of deformation
analysis was presented, and the approaches developed by the groups of the committee
were compared in the general theory [Chrzanowski and Chen, 1986).

In these notes, the authors will provide a contemporary methodology for the analysis
of deformation measurements. Due to the space limitations, no detailed derivation of the
formulae will be provided, but references may be consulted.

2. General Background on the Analysis of Deformation Surveys

2.1 General Classification of Deformation Analysis Mcthods
If acted upon by external forces (loads), any reat material deforms, i.e., changes its
dimensions and shape. Under the action of loads, internal stresses (force per unit area) are
produced. If the stresses exceed certain critical values, the material fails {breaks). Thus
the following two aspects of deformation should be distinguished in the analysis of
deformation surveys:
(1)  geometrical, if we are interested only in the geometrical status of the deformable
body, the change of its shape and dimensions;



(2)  physical, if we want to determine the physical status of the deformable body, the
state of internal stresses, and, generally, the load-deformation relationship.

[n the first case, information on the acting forces and stresses and on physical
properties of the body are of no interest to the interpreter or are not available. As a final
result of the geometrical analysis of deformation surveys, usually only relative
displacements of discrete points are given with their variance-covariance matrix. The
geometrical analysis is of particular importance when the deformable structure is supposed
to satisfy certain geometrical conditions, such as verticality or the alignment of some of its
components. In that case, the results of the deformation surveys are directly utilized in an
adjustment of the geometrical status.

In a more refined geometrical analysis, when an overall picture of the geometrical
status is required, the displacement field (or fields) for the entire body is approximated
through a least-squares fitting of a selected displacement function (deformation model) into
the observed displacements, as discussed in Chrzanowski et al. (1983). The displacement
field may be readily transformed into a strain field through the well-known
strain-displacement relationship.

In the physical analysis of deformations, the load-deformation relationship may be
modelled by using either an empirical (statistical) method, through a correlation of
observed deformations with the observed loads; or a deterministic method, which
utilizes information on the loads, properties of the material, and physical laws governing
the stress-strain relationship.

In this presentation, only the geometrical analysis of deformation surveys will be
discussed. The physical interpretation of deformations will be briefly discussed in another
presentation by Chen and Chrzanowski.

2.2 Classification of Geodetic Monitoring Networks
Generally, in deformation measurements by geodetic methods, whether they are
performed for monitoring enginecring structures or ground subsidence in mining areas or
tectonic movements, two basic types of geodetic networks are distinguished [Chrzanowski
etal, 1981]:
(1)  absolute networks in which some of the points are, or are assumed to be, ourside the
deformable body (object) thus serving as reference points (reference network) for
the determination of absolute displacements of the object points (Figure 2.1);
(2)  relative networks in which all the surveyed points are assumed to be located on the
deformable body (Figure 2.2).

In the first case, the main problem of deformation analysis is to confirm the stability
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of the reference points and to identify the possible single point displacements caused, for
instance, by local surface forces and wrong monumentation of the survey markers. Once
the stable reference points are identified, the determination of the geometrical state of the
deformable body is rather simple. _

In relative networks, deformation analysis is more complicated because, in addition
to the possible single point displacements like in the reference network, all the points
undergo relative movements caused by strains in the material of the body and by relative
rigid translations and rotations of parts of the body if discontinuities in the material
(tectonic faults, for instance) are present. The main problem in this case is to identify the
deformation model. From repeated geodetic observations, it is necessary to distinguish
between the deformations caused by the extension and shearing strains, by the relative

rigid body displacements and by the single point displacements.
3. Deformation Modelling

3.1 Deformation Parameters

The deformation of a body is fully described in three-dimensional space if 9
deformation parameters, 6 strain components and 3 differential rotation components, can
be determined at each point. In addition, components of relative rigid body motion
between blocks should also be determined if discontinuities exist in the body. These
deformation parameters can be calculated if a displacement function representing the
deformation of the body is known. Denote the displacement function by

[ u(x, y, z; t - t,) ]
dx, v, zit-td= | v(x,y,zit-1) | (3.1)
L w(x, y, z;t—to)J

with u, v, w as the components respectively of the displacement in the x, y, z directions,
which are functions of both position and time. Then the normal strains designating
clongation or compression in the directions x, y, z arc calculated from:

£, =du/dx g, = ovidy £, =dwidz , (3.2)
and the shear strains characterizing the distortion of the angles between initially
corresponding lines are obtained as

€y = (QWdy + av/dx) / 2

€,, = (Ju/dz + dw/dx) 7 2 (3.3)

Eyz = (Avioz + dw/dy) [ 2 .



The differential rotations around the x, y, z axes are expressed as

W, = (av/0z - Iw/dy) / 2

Wy = (ou/dz - ow/ldx) / 2 (3.4)

w, = (du/dy - oviox) /2 ,
respectively. In general, the above derived quantities arc time dependent and their
derivatives with respect to time provide the strain rate.

Certain functions of these strain parameters, for instance, maximum strain,
dilatation, pure shear, simple shear, and total shear, may also be of interest and their
definitions can be found in, e.g., Sokolnikoff [1956] or Frank [1966]. Thus the main task

of deformation analysis is to obtain a displacement function, which characterizes the
deformation in space and in time.

3.2 Deformation Models
Since, in practice, deformation surveys are made only at discrete points, the

deformation of a body must be approximated through some selected model which fits into

the observation data in the best possible way. The displacement function (eqn. (3.1)) can
be expressed in matrix form as: )

d=Bec¢ , (3.17)
where B is called the deformation matrix with its elements being functions of the position
of the observation points and of time, and ¢ is the vector of unknown coefficients to be
estimated. For illustration, examples of typical deformation models in two-dimensional
space are given below.

(1)  Single point displacement or a rigid body displacement of a group of points, say,
block B (Figure 3.1a) with respect to block A. The deformation model is expressed
as: _

up=0, vy,=0 ; ugp =2a, and vg=b,, (3.3)
where the subscripts represent all the points in the indicated blocks.

(2)  Homogencous strain in the whole body and differential rotation (Figure 3.1h), the
deformation model is linear as

U= EX +Ey Y - Y

V=g X+ EY + WX (3.6)
where the physical meaning of the coefficients is defined in eqns (3.2) to (3.4) with
@, In eqn. (3.4) being replaced by w.

(3) A deformable body with one discontinuity (Figure 3.1c), say, between blocks A and
B, and with different lincar deformations in each block plus a rigid body

displacement of B with respect to A. Then the deformation model is written as



llA= me + exyAy - (DAy

VA = Exyak + EyaY + @pX (3.7a)
and

ug =2, +€p(x-x,) + EyBUY - ¥o) - WY - ¥,)

vg = b, + exyB(x - Xg) + eyB(y - V) +og(x-x,), (3.7h)
where X, v, are the coordinates of any point in biock B.
The components Au; and Av; of a total relative dislocation at any point i located on

the discontinuity line between blocks A and B can be calculated as:

Au; = ug(x;, ¥y - uA (K ) 38
and
Avj = vp(Xp ¥ - VAl yp) - G-9)
a) D) c)
— fﬂsﬁ
s [
A,B

Figure. 3.1 Typical deformation models.

Usually, the actual deformation model is a combination of the above simple models
or, if more complicated, it is expressed by non-linear displacement functions which require
fitting of higher-order polynomials or other suitable functions.

If time dependent deformation parameters are sought, then the above deformation
models will contain time variables. For instance, in the first model above (eqn. (3.3)), if
the velocity (rate) and acceleration of the dislocation of block B with respect to block A are
to be found, the deformation model would be

Ua =0, vy=0, ug=a.t+ ;'a'.ol:2 and vp = bt + B'Otz (3.1
and, in the model of the homogeneous strain, if a linear time dependence is assumed, the
model becomes:

u(x, y, t) = €,xt + Eeyyt - Wyt (3.11)

vix, y,t) = éxyxt - éyyt + txt (3.12)



where the dot above the parameters indicates their rate (velocity) and the double dot their
acceleration.

3.3 The Functional Relationship Between the Deformation Model and the Observed
Quantities.

Any observation, geodetic or photogrammetric, or geotechnical measurement made
in deformation surveys will contribute to the determination of deformation parameters and
should be fully utilized in the analysis. The functional relationships between different
observable types and the deformation model, defined in eqns (3.1) and (3.1, are given
below using a local coordinate system.

(1)  Observation of coordinates of poiat i, for instance, the coordinates derived from
photogrammetric measurements or obtained using space techniques:

in(t) 1 rxi(to) | rui 1
lvio | = Ty 1+ 1y | (3.13)
Lz | Lzt 1 Lw |

or
ri(t) = ry(t,) + d; = r;(t,) + Be, (3.13")
where r; is the position vector of point i, and the others are defined in eqn. (2.1).
(2)  Observation of coordinate differences between points i and j, e.g., height

difference (levelling) observation, pendulum (displacement) measurement, and
alignment survey:

L yo-yo ! = | yilt) - vi) |+ vi-vp | (3.14)
L Z(5) - () | L zi{ty) - Zi(ty) 1 3 W - W, |

or
+ {B(xj, Y %55 tty) - Bix;, Vi Zp -t} e (3.149
If the components of the displacement obtained from a pendutum observation do not
coincide with the coordinate axes, ¢ transformation to the common coordinate
system has to be performed. Similarty, a coordinate transformation may be required

~ in alignment surveys which provide a transverse displacement of a point with respect
to a straight line defined by two base points.



(3)  Observation of azimuth from point i to point j

r Uj - U.i -I
(xlj(t) = alj(to) + [('Cosaij) / (SIJCOSBIJ) , (Sm(xlj) / (SUCOSI}U')] I | (3.15)

—

where [;: and S;; are the vertical angle and spatial distance from point i to point j,
1] j o p

respectively. The observation of a horizontal angle is expressed as the difference of
two azimuths,

(4) Observation of the distance between points i and j:

=

J -

[ 1
Sij(t) Su(t)+(cos[3 sma cosB cosQ; , smBU) | v vi- v l . {3.16)
L w,-w, |

1

(5)  Observation of strain along the azimuth o and vertical angle f at point i:
ety=¢ety)+p Ep, (3.17)
where

= (cosP sine, cosp cosc, sinf)

[ Juox ou/dy du/gz |
E=| ovox ov/gy ovidz |
L owiox dw/dy owidz |

(6)  Observation of a vertical angle at point i to point It

(sinﬁij SiHOEij sinﬁij cosaL; cosBij \ [ U - ]
Bij(t) = Sij(to) + . - , P vi- v | (3.18)
LSy Sij Sy ) Lwj-w ]

(7)  Observation of a horizontal tiltmeter:
T(t) = T(t,) + (Jw/dx) sinct + (Gw/dy) cosa (3.19)
where ¢ is the orientation of the tiltmeter.
In the above formulae, the quantities u, v, w and their derivatives are replaced by the

deformation model which is expliticly expressed in eqn. (3.1'). Thus all the observations
are functions of the unknown coefficients ¢.



4. Remarks on the Adjustment of Monitoring Networks

As discussed 1n section 3.3, the deformation parameters can be directly estimated
from the observations. However, if the observation scheme includes a complete geodetic
network (without configuration defect), it is recommended that the whole procedure of
deformation analysis be separated into two parts:

(1) adjustment of the network for each campaign;
(2) fitting of a deformation model into displacements (quasi-observables) calculated
from paired differences in the adjusted coordinates.

The adjustment process provides an opportu-nity for detecting outliers and systematic
errors in the observations, as well as for the evaluation of the quality of the observations.
Appendices [ and II give a brief review on the detection of outliers and on the assessment
of the observations, respectively, using methods developed at UNB [Chen 1983; Chen and
Chrzanowski, 1985; Chen et al., 1986].

If subjected to the proper transformation (see section 3), the displacements calculated
from the adjusted coordinates give a picture of the deformation pattern and help in the
identification (trend analysis) of the deformation model,

For the sake of completeness in the discussion of deformation analysis, some
remarks on the adjustment of monitoring networks are given below.

Deformation monitoring networks are mostly free networks, suffering from datum
defects. Censider the n-vector of observations / with dispersion measured by Gon ina
monitoring network such that

I+V=Ayy+Axx, 4.1
where v is the n-vector .of residuals; x is the vector of coordinates of surveyed points; v is
the vector of nuisance parameters, e.g., the orientation unknown for each round of
directions; and Ay, A, are corresponding configuration matrices. The least-squares
criterion leads to the normal equations:

[ATQ 1A, ATQA T Ty
| I
L AXTQ-IAY ATQA ||

] fAyTQ'U ]
| = | Lo (4.2)
I latQir ]

X X

Eliminating vector y, one gets
AXT[QJ . Q-IAy(AyTQ—lAy)-I AyTQ-l] Ax X =
- A Tro 1. o-1 To-1a v1 4 Tyl
or, more compactly, as



Nx=w . (4.39
Due to datum defects in the monitoring network, the coefficient matrix, N, of the normal
equations 1s singular. Therefore, one must define datum cquations to solve for x. Let
DTx = 0 be the datum equations in which the rank of matrix D is equal to the number of
datum defects in the network. Then, the solution of eqn (4.3") becomes

X=Npw , Q.= Np (4.4)
with )

Np=(N+DDy1.HHTDDTH)! HT | (4.5)

The matrix H generates the null space of matrix N, i.e., NH=0. For example, for a

-triangulation network, matrix H reads as-

[ 1 0 I 0 1 o 1
Lo L 0 1 0 L

HT = | Y1 Xy - x40 ¥ Xp° I 4.6)
L xlfo ylo x20 )’20 xmo ymo J

where x,°, ;% are the coordinate components of point i with respect to the centroid of the
network. For a trilateration network, the last row of HT in eqn. (4.6) disappears.

In the general case of a three-dimensional network consisting of m points, one
expression of matrix H has, for the maximal case of seven datum defects, the structure:

[ 0 0 0 z,° -y, % 1
|0 I 0 2z 0 x° y0 ]
l 0 | ¥i° -x¢° 0 z,° [
| |
H= | | 4.7)
E : . : : oo
l O 0 0 2.0 ve® x|
| 0 -z, 0 X Yo |
L o 0 I AR S ¢ 2,0 1 Bm)x(7)

where %, y.%, and 7, are the approximate coordinates of the points in the directions x, v,
and z, respectively, with respect to the centroid of the network. The first three columns of
matrix H correspond to the translation of the network in the directions x, y, z: the second
three columns take care of the rotation of the network at the centroid about the x, v, z axes,

respectively; the last column accounts for the change in scale.



The solution of eqn. (4.3") with respect to the datum DTx=0 can also be realized
through a similan'ty transformation from any solutions (say x,) as

x=8x, , Q;=5Q,,ST (4.8)
with

S=(I-HOTH) ! DO =I-HHTWH)IHTW , (4.9)
where W = D(DTDY! DT. The matrix W in eqn. (4.9) can be interpreted as a weight
matrix in the definition of the datum. If all the points in the network are of the same
importance n defining the datum, then W=I and eqn. (4.8) becomes the inner constraints
solution.

If only some points are used to define the datum, then the other points are given zero
weight. For more details, refer to Chen [1983].

From the adjustment, the a posteriori variance factor 302 1s calculated from

8,2 =vIQ/df, (4.10)
with the degrees of freedom df = (n - Uy - U, +d), where v is the vector of estimated
residuals, u, u, are the numbers of unknown parameters x and y, respectively, and d is
the number of datum defects. When there are k a posteriori variance factors O'iz (i=1,...k)
with the degrees of freedom df from the adjustment of k epochs of observations, the
pooled a posteriori variance factor can be calculated from

.4
Gor = (Zdf; 83 /(T dfy), (4.11)

if the Bartlett test [Bjerhammar, 1973] allows the non-rejection of the null hypothesis H, :

2_~2_ _ <2
61" =0y = .. = G".

5. Identification of Deformation Models

Generally, the analysis of deformation surveys consists of three basic processes:

(1) preliminary identification of the deformation model;

(2)  estimation of the deformation parameters:

(3)  diagnostic checking of the deformation models and the final selection of the "best"
model.

Identification procedures are applied to a set of data to indicate the kind of
deformation that warrants further investigation. After a tentative formulation of the
deformation trend, estimates of deformation parameters or the coefficients of the models
are obtained using the least-squares technique. After the parameters have been estimated,
diagnostic checks are performed to determine the adequacy of the fitted model or to indicate



potential improvements. Those three processes necessarily overlap and should be

performed as an iterative three-step procedure.

When the deformation observations are scattered in time, a simultaneous handling of
all the observations in the deformation analysis may be necessary (see section 6). The
identification of the deformation model in such cases may be difficult unless the model can
be assumed from a priori knowledge of the deformation mechanism. In practice, the
observations are usually grouped in distinct epochs of time. Then performing the analysis
on pairs of epochs is preferred to the direct simultaneous analysis of all the epochs. The
analysis of pairs of epochs has the following advantages:

(1)  Single point movement in a reference network does not usually follow certain time
functions and, therefore, the main interest lies in the localization of unstable points
between two epochs of time.

{2)  An analyst of deformation measurements is often curious about what happened to
the deformable body between the most recent surveying campaign and the previous
one.

{3)  Through the analysis of successive pairs of epochs of observations, the deformation
trend in the fime domain will be recognized. - '
An important step in the analysis of pairs of epochs of observations is to identify the

deformation pattern in the space domain. Moreover, if the deformation is postulated to be

of a linear nature in time, then all the observations made at different epochs of time can be
reduced to the observed rate of change of the observation,

Here, a method developed at the U.S. Geological Survey [Prescott et al., 1981]
should be mentioned. In their method, all the observations of each line in a trilateration
network are plotted against time, and then a linear time function (without precluding the
possibility of nonlinearity) is fitted to each of the plots. The slope of each fitted straight
line is an estimate of the average rate at which the line was changing during the time period
covered by the observations. The standard deviation in the rate is also calculated. Then
the problem reduces to the estimation of the deformation rate. Therefore, analysis of
multi-epoch observations becomes the estimation of the deformation rate. In this case, the
main task is again 1o identify the deformation pattern in space.

As already mentioned, the selection of deformation models may be based on a priori
information or on wend analysis from the displacement pattern. If a monitoring network
suffers from datm defects, which is usually the case, a method of iterative weighted
transtormation {Chen, 1983] can be used to yield the "best" picture of the displacement
field, as discussed below.

When comparing two campaigns, the vector of displacements and its cofactor matrix



are calculated as

d=%-% , Qu=Q4+Qg  with 5,2 from eqn. (4.11). (5.1
Because unstable points are not identified, the displacements calculated from eqn. (3.1)
may be biased by a pre-selected datum or by a different datum definition in the adjustment
of two campaign observations. A typical example for the latter case is the monitoring
scheme in which a triangulation network was used in the first campaign and a trilateration
or triangulateration network in the second campaign.

To overcome this problem, a method of iterative weighted transformation has been
deveioped. Let dq and Q4 be calculated from eqn. (5.1). The transformation of d, into
another datum is computed from eqns_' (4.8} and (4.9) as

dy,; = (- HH'WHY HTW) 4, = S, d,. . (5.2)
At the outset, the weight matrix W is taken as the identity, then in the (k+1)th
transformation, the weight matrix is defined as

W = diag{ 1/{d;(k){} , (5.3}
where d;(k) is the it component of the vector dy afier the k% iteration. The iterative
procedure continues until the differences between the successive transformed
displacements (i.e., dy +1 - dy) approach zero. During this procedure, some d;(k) may
approach zero causing numerical instabilities because W; = 1/|d;(k)| becomes very large.
Thus, a lower bound is set. When |d;(k)| is smaller than the lower bound, its weight is set
to zero. If in the following iterations the d;(k+1) becomes significantly large again, the
weights can be changed accordingly. The method provides a datum which is tobust to
unstable reference points giving an unbiased depiction of displacements. In the last
iteration, say (k+1)*, the cofactor matrix should aiso be calculated as:

Qa1 = S Qqiy SkT ’ (3.4)

Comparing the displacements of each point against its confidence ellipse, one can
dentify the reference points which are most probably unstable. The following are two
examples used to illustrate the method.

The first example is a simulated relative geodetic network across a fault line (Figure.
5.1}, where only directions were measured in the first campaign and both directions and
distances were measured in the second. A 200 mum relative movement in the y direction of
block B with respect to Block A was introduced. Without considering measuring errors,
the displacement fields using the proposed method and the method of the inner constraints
solution are portrayed in Figures. 5.2 and 5.3, respectively, coupled with the real
displacement pattern in dashed lines. As one can seg, the displacement field obtained from
the method of iterative weighted transformation is much closer to the real situation,
compared with the constraint solution. |
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Figure 5.1 Typical campaign of the simulated relative geodetic network.
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In the second example, the method is applied to a dam monitoring network
consisting of a reference network of six stations from which a number of targetted points
on the dam were positioned. The same network in actual conditions is shown in the
example of section 10 (Figure 10.1) A simulated movement in steps of 1 mm was
introduced to station 5 in the y direction between the successive survey campaigns (total of
11 campaigns). The displacement field coupled with the error ellipses at 95% confidence
level were calculated using the method of iterative weighted transformation and the method
of the inner constraints solution. Table 1 summpfarizes the results of the identification of

the points suspected as being unstable because their displacements extended beyond the
confidence region at 95%.

TABLE 1.
Points outside the 95% confidence region after introducing

simulated displacements to station 3.

Suspected Accumulated simulated displacement of station 5 in mm
Unstable point* 1 2 3 4 5 6 7 g 9 10

0 0 0 0 0

0 0 0 0 0 0

X0 X0 X0 X0 X0 X0 X0 X0 X0 X0
0 0

<O O O

[ ¥

* X: using the method of iterative weighted transformation.

0: using the method of the inner constraints solution.

It is clear from Table | that the method of iterative weighted transformation identified
the unstabie point correctly, while the method of inner constraints solution declared more
suspected unstable points.

The method of the weighted transformation is flexible. If some points are more
likely to move, a weight of zero is assigned to each of these points during the iterative

process. For example, if the points on one side of a tectonic fault may likely move with



respect to the points on the other side, then only the points on the one side are used to
define a datum.

6. Estimation of Deformation Models

Let y; (i=1,2,..., k) be the vector of observations in epoch i, including
quasi-observations (e.g., the coordinates of points from an adjustment of geodetic network
of photogrammetric surveys), geotechnical measurements (using strainmeters,
extensometers, tiltmeters, etc.), and individual geodetic observations, and P; be the weight
matrix of y;. The weight matrix for the coordinates of points estimated from eqn. (3.3 is
taken as N, and for the other observed quantities it is taken in the conventional way as the
inverse of the cofactor matrix. Because of datum defects and possible configuration
defects 1n a monitoring network, the weight matrix P. is, in general, considered as being
singular [Chrzanowski et al.,, 1983]. Determination of the coefficients of a deformation

model, d(x, v, z; t-ty) = B(x, v, z; t-t;)c, is based on the following functional relations:

Cy, 1T T8 1 [T 0

Ly, |18, | 1 B, | &1

| |+ | | = | | (6.1)
| | | l I

| I T [ ool Le ]

Ly, 1 L& | L1 B, |

with weight matrix P = diag{Py, P,, ..., P }, § is the expected value of y,, and §, is a
vector of residuals after fitting the deformation model to the y;; matrix Ei is a function of
the position of points and time. If y; is the vector of coordinates, then ﬁi =B, Ify;is the
vector of observations rather than of the coordinates of points, 15’1 = AB,;, where matrix A
is the transformation matrix (or configuration matrix) relating the observatons to the
coordinates. In order to keep the same population of vector y; in each epoch, dummy
observations with zero weight are put in the place of observations missing in campaign i in
the vector y;. Applying the principle of least squares to model (6.1), the normal equations
read:



[ 5P, spB, 1 7el  [spy, |
[ 2 [0 | 1 !
| IR B | (6.2)
| x k [ " |
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The coefficient matrix of the normal eqns. (6.2} may be singular with rank defects

k
rd{Y P }=d (6.3)
1

which s equal to the number of remaining datum and configuration defects not determined
In at least one epoch.

Eliminating § from eqn. (6.2) allows the vector ¢ and its accuracy to be calculated

from:
R K K k k
¢= NI ZBTPy; - SBTP( XP;)° XPyyl (6.4)
2 2 1 1
and
A ' -
Co=0 Nt = 7 XBTPB; - ZBTP( ZP) ZPB (6.5)
2 P 1 2

To serve as the a priori variance factor (502, the pooled variance (a posteriori to the
campaign adjustments) factor obtained from eqn. (4.11) is used.

As was already mentioned, an indispensible step in the deformation analysis is the
analysis of pairs of epochs of observations. In this special case, for each pair of epochs,
eqn. {0.4) reduces to:

=BT PA},ﬁ)'lﬁT Pay Y, (6.6)
in which
Ay = Y-y

If y, stands for observations L;, solution (6.6) becomes:
¢ = (BTATP,,AB]"! BTATP, (1, - 1)) (6.7)



with

Pa=@Q+ Q! .
This is called the "observation approach.” If y; stands for the estimated coordinates X;
from eqn. (4.3"), then

¢= BBy BTP, d, (6.8)
with d = (x5 - x{) and Py=N{(N; + Ny)"N,. Then it is named the "displacement
approach.”

7. Assessment of the Deformation Models

7.1 General Remarks on Statistical Testing

Analysis of deformation surveys involves several tests of hypotheses. Consider the
observation equations:

I=Ax+v , (7.1)
where [ is a vector of n observations with normal distribution and dispersicn O'O?'Q, xisa
vector of u unknown parameters, A is the design matrix (or configuration matrix), v is the
vector of residuals, 002 is the a priori variance factor, and Q is a cofactor matrix so that the
observations have a weight matrix P = Q*L. If the null hypothesis H, : Hx = w is to be
tested against an alten{ative H, : Hx = w, then the test statistic can be obtained by

imposing the constraints Hx = w on the parameters x. Under the null hypothesis, model
(7.1) becomes:

[ I=Ax+v with (}‘OZQ
{ . (7.2}
l

Hx=w

The acceptance of the null hypothesis at a certain significant level o is ensured by the
inequality:

T =R - Ry /RS - dD))] < Floy; df, - df, df), (7.3)
or, equivalently,

T = [(R-R /R (Af /(df-dD)] €

< (dfy F(o; df-df, d)(df + (df | -df) Flo df | -df, df)) , (7.4)

where R, and Ry are the quadratic forms of the residuals from the adjusiment of model
(7.1) and model (7.2), respectively. The corresponding degrees of freedom are:

df = n - rank{A},
and



df; = n - rank{AT: HT} + rank{HT} .

In the practice of hypothesis testing, (Ry - R,) and R, in the statistics (7.3) and (7.4)
can be calculated, depending on the problem at hand, in three different ways [Chen, 1983]:
(1)  from separate adjustments of model (7.1) and model (7.2),
(i) frpm the adjustment of model (7.1),

Ry-R, = (Hx-w)T (HAT QT Ay HTy'! (Hx - w) (7.5)
(iii) from the adjustment of model (7.2)
Ri-Ry=vT Q1A A,TQ1Q, Q1A A,TQ !y, (7.6)

where v and Q are the vector of residuals and its cofactor matrix, respectively, and matrix

A, generates the space whose union with the solution space of model (7.2) equals the
solution space of model (7.1).

7.2 Assessment and Final Selection of the Deformation Model
The global appropriateness of a deformation model can be tested using a quadratic

function of the residuals 8, in eqn. (6.1) as

k
AR =3 8T P35, (7.7)
1

where the notation has been defined in section 6. The quantity AR follows a chi-squared
distribution with degrees of freedom being

k
df,= Zr{P;}-u+d (7.8
1

where u is the dimension of the vector of unknowns (£7 : ¢1) of-eqn. (6.1}, r{P;} is the
rank of matrix P;, and d has been defined in eqn. (6.3). If the following inequalities hold:

2.2 .
AR €0 % y4(df o), (7.9)
when the a priori variance factor is known, or
AR €G,2df, F(ef, df; o) , (7.10)

when the pooled variance factor is used and df = fi + ... + fi, as defined in eqn. (4.11),
then the deformation model is globally acceptable at the (1-@) confidence level. When
¢=0, the test statistic (7.9) or (7.10) can be regarded as an extension of the global
congruency test, which originated from Pelzer {1971].

The significance of the individual parameter Si or a group of u; parameters, Gi which
is a subset of ¢, is revealed by testing the null hypothesis H,,: ¢;=0 or ¢;=0 versus the
alternative hypothesis H, : ¢;#0 or ¢;#0. Their significances are indicated by

820, qp) = F(1, df; o) (7.11)



and
¢TQ 1 &/(c,2 u) = F(u,, df; o) (7.12)
where g;; is the ith diagonal element of Qg and Q,, is a submatrix of Q. If the global test
fails, localization in time domain or in space domain should be performed. Displaying the
residuals will help in improving the model.
Since more than one of several possible models could fit the data reasonably well,
the authors have sct the following criteria for selection of the "best model™:
(1) the model passes the global statistical test and all parameters are significant beyond
some level of o as 0.10 or 0.03,
(2)  if more than one model satisfies the above criteria, then the model with the fewest
parameters is selected.

(3)  if no model satisfies the criteria of (1), then physically-based rationale and minimum
error Of fit are used.

8. Summary of the Generalized Method of Geometrical Analysis

The presented approach to the geometrical analysis of deformation surveys has been
named by the authors the UNB Generalized Method.

As shown in the previous sections, the method is applicable to any type of
geometrical analysis, both in space and in time, including the detection of an unstable area
and the determination of strain components and relative rigid body motion within a
deformed object. It allows utilization of different types of surveying data and geotechnical
measurements. In practical application, the approach consists of three basic processes:
identification of deformation models; estimation of the deformation parameters; diagnostic
checking of the models and the final selection of the "best" model.

The analysis procedures using the approach can be summarized in the following
steps:

{1)  Assessment of the observations using the minimum neorm quadratic unbiased
estimation (MINQE) principle (Appendix I) to obtain the variances of observations
and possible correlations of the observations within one epoch or between epochs, if
the a priori values are not available.

(2)  Separate adjustment of each epoch of geodetic or photogrammetric observations, if
such are available, for detection of outliers (Appendix II) and systematic errors. If
correlations of the observations between epochs are not negligible, then
simultaneous adjustment of multiple epochs of observations is required.

Step 1 and 2 overlap because the existence of outliers and systematic errors will influence



the estimated variances and covariances and adopted variances and covariances of the

observations will affect outlier detection.

(3) Comparison of pairs of epochs; selection of deformation models based on a priori
considerations and trend analysis from the displacement pattern if such is available
from the observations. If a monitoring network suffers from datum defects, the
method of iterative weighted transformation is used to vield the "best" picture of the
displacement pattern.

(4) Estimation of the coefficients of deformation models and their covariance using all
avatlable information,

(5) Global test on the deformation medel; testing groups of the coefficients or an
individual oune for significance.

The above three steps should be considered as an iterative three-step procedure, so they

necessarily overlap.

(6) Simultaneous estimation of the coefficients of the deformation model in space and in
time if the analysis of pairs of epochs of observations suggests that it is worth
doing.

This simultaneous estimation must be performed if the observations are scattered in time.

The iterative three-step procedure is still valid. The possible deformation models can be

selected either based on a priori considerations or by plotting the observations versus time

for trend analysis.

(7}  Comparison of the models and choice of the "best” model. Since more than one of
several possible models could fit the data reasonably well, the "best” model is
selected according to the criteria:

(a) the model passes the global statistical test at an acceptable probability;

(b) if more than one model passes the global test, then the model with the fewest

significant coefficients is selected.

(c) if the two above criteria cannot be satisfied, then rationale based on physical

ground and minimal error of fit is used.

(8)  Calculation of the desired deformation characteristics and their accuracies from the
parameters of the "best” model.

(9)  Graphical display of the deformation model.

A detailed description of the above steps with practical examples can be found in
Secord [1984]. Some applications will be given in case studies presented at this
workshop. The reader is also referred to Chen [1983], Chrzanowski et al. [1983; 1985],
and Chrzanowski and Secord [1983; 1985).



9. Computer Program Cluster "UNB DEFNAN"

The UNB generalized method has been implemented through software developed in
FORTRAN 77 on an IBM 3090 mainframe and on an IBM PC/AT. The cluster of
programs has the same behaviour in either system with the only variations being in file
management and in graphical display. Hence, the following description of the modules is
applicable to either system.

The cluster is most easily described with reference to Figure 9.1 which shows the
arrangement of modules.

Any campaign of measurement, I, however populated, is utilized. If the
configuration of measured relationships is complete, then an adjustment is performed
resulting in least-squares estimates, X;, under explicit minimal constraints in 1, 2, or 3
dimensions. The intention behind "UNB DEFNAN" has been to remain flexible enough to
accept the estimated coordinates and their variance-covariance matrix from any style of
adjustment program which is then received by module CORDIF.

Following from at least two campaign adjustments are the analysis of trend and the
modelling using coordinate differences, dx, in program module CORDIF within which
there are several submodules. The first, CORDIFD, initiates the comparison of a pair of
campaigns by creating a set of displacements versus minimal explicit constraints. It is this
upon which the datum independent weighted transformation and modelling are based.
Also, CORDIFD allows the segregation of stations common to the two campaigns or of
only those stations of interest, e.g., only the reference network stations. The displacements
can be readily depicted against their respective cllipses at any desired o level through
graphics packages on either system. The weighted transformation is performed by
submodule CORDIFW producing a datum independent indication of trend whick may be
visualized as displacement vectors with ellipses at any specified o level. Any collection or
arrangement of stations can be considered in the modelling which is done in a very flexible
submodule CORDIFM. Any model can be accommodated, provided that the functional
relationship has been coded. Full statistical testing of the model and its constituents and
any desired characteristics may be derived and their significance levels determined. One
example is linear homogeneous strain for which the basic parameters are Exr By Eyyn O
with a possibie a4 and b,. From this, the maximal and minimal strains, €max and €., and
their orientation plus the vector of relative rigid body movement, d with azimuth Ay, would
be derived accompanied by their standard deviations and (1-a) levels.

Circumvention of a campaign adjustment, especially when not allowed by the lack of

a substantial configuration, requires considering the observations themsetves. This may be



t;. P;; — (1-. 2-, or 3- dimensional adjustment]
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Figure 9.1 Program cluster "UNB DEFNAN."



readily done through module OBDIF which treats obscrvation differences, dl, in much the
same way as the dx were treated in CORDIF with the additional flexibility of being capable
of dealing with observables other than the customary geodetic angular and linear
measurements. Displacements, dx, can be estimated from the di in submodule OBDIFD
with results similar to those of CORDIFD, even with configuration and multiple datum
defects associated with totally isolated but repeated observations. The weighted
transformation, dx,, can be obtained through submodule OBDIFW for an indication of
trend. Similarly as in CORDIFM, modelling may be done using the dl in submodule
OBDIFM.

If the trend as indicated through the campaign comparisons would indicate the
feasibility of a model considering all or many campaigns simultaneously, then this may be
accomplished through module SIMSOL. This simultaneous solution can accommodate as
many campaigns as desired with as few as one observation in a’campaign. Rates,
acceleration, and higher-order parameters may be estimated with full statistical assessment
and the analysis of the observations.

Altogether, the program cluster "UNB DEFNAN" provides a flexible and versatile
deformation analysis package which can also be utilized in the preanalysis and design of
deformation mounitoring schemes. |

16. An Example of a Reference Geodetic Network

A pure triangulation network of 6 concrete pillar reference stations and 10 uniquely
intersected dam crest points (Figure 10.1) was observed twice with 47 directions first and
53 directions in the second campaign. Least-squares estimations of the coordinates, §1,
?2, were made under explicit minimal constraints involving stations 5 and 6 (considered as
“fixed” and errorless) using UNB program GEOPAN (GEQdetic Plane adjustment and
ANalysis). No observation in cither campaign was detected as being an outlier under the t
max criterion at 0.95. The pooled variance factor, 602 =0.95278, had df = 31 degrees of
freedom. With each campaign having the same stations and datum, the observed
displacemeunt components d were obtained through the simple differencing of coordinates,
through module CORDIFD, as

d=%-%, (10.1)
with cofactor matrix
Qy=0Q;+Q, . (10.2)

Within the d and QQ are zero elements corresponding to the coordinates of the constraining
stations 3 and 6.
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Figure 10.1 Reference geodetic network.
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After the converged iteration of the weighted transformation of d from equ. (10.1),
the unique, datum independent displacement pattern produced by module CORDIFW using
eqn. (5.2) 1s shown in Figure 10.2. Obviously, reference station 4 has moved
significantly while the other reference stations remain stable at 0.95.

Having an a; and b; for each object point and also for station 4, and modelling the
block of points 1, 2, 3, 5, and 6 as stable, the deformation model consisted of 22
parameters (i.e., 11 pairs of displacement components) which were estimated using
module CORDIFM and eqn. (6.6). A plot of these displacements and their associated
confidence regtons at 0.95 is given in Figure 10.3. With 6 degrees of freedom in the
modelling, the global test on the adequacy of the model was not rejected at 0.95 since:

T2 = (8,0 1 (6,2) = 1.7628 < F(6, 31; 0.05) = 2.41 .

Thus, with the a priori knowledge of the intention of the network serving as a reference,

this model was adopted as appropriate.
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APPENDIX I
DETECTION OF OUTLIERS

There are two concepts of outlying observations in statistics. One is the "mean shift
model,” where an outlier has the distribution of N + A, 02) instead of N(j, 02), and the
other is the "variance-inflation model" in which an outlying observation is distributed as
N(u, 320'2), aZ > 1, i.e., its variance is larger than expected. Different strategtes for
reweighting observations in a least-squares adjustment for detection of outliers are based
on the latter concept. In these notes, only the “mean shift model" will be discussed.

Consider the Gauss-Markoff model (/, Ax, 52Q). Let an n vector of observations !
be partitioned into two groups: I, and L, with [; being of dimension n; and free of
outliers, and /) being of dimension n, and containing suspected outliers, denoted by 3.
The mean shift model reads:

g, 1 Ty 1 T4 01 I'x 1
N ol
Ly I Lwyd Lla, 1] Ls |

, (L1)

where v;, A; (i=1,2) are corresponding vectors of residuals and configuration matrices,
respectively. More compactly, eqn. (I.1) is written as:

l+v=Ax +ES. (I.19

If the observations are uncorrelated, i.e., matrix Q is diagonal, model (1) is
equivalent to the observation equations after outlying observations [, are removed. The
statistical tests on outliers are to confirm, at a certain confidence level (1-q), the null
hypothesis H, : 8 = 0 versus an alternative one H, :3=0. In the practice of outlier
detection, an adjustment is performed with the original Gauss-Markoff model (I, Ax,

GOZQ). The least-squares estimation of the residuals and their cofactor matrix is

v - [AATQ AT ATQ L L1 =M, (1.2)
and ’

Q= Q- AATQ 1Ay AT, (1.3)
respectively. The quadratic form of the residuals

Ry =¥1Q % (L4)

follows a 002x2 distribution with degrees of freedom df = n-rank(A). Introducing vector

d in model (I.1") will result in 4 reduction in the quadratic form of the residuals



AR =R - R, - TQ1AL(A,TQ1QQ 1A, A, TQ 17, (1.5)
which wiil be non-centrally Gozxz distributed with degrees of freedom n, if the null
hypothesis is to be rejected. The quantity AR is statistically independent of (Ry-AR). If
there are no other suspected outliers in the observations, then (R{-AR) will follow a central
0027(2 distribution with degrees of freedom being (df-ny). Confirmation of the suspected
outliers is made:

(D T =ARMy0,% 2 F(as; 1y, o) (L6)
if the a priori variance factor 0'02 1s available;
(i) Ty =ARM,G 22> F(o; ny, df-n,) (I.7)
if the a posteriori variance factor 062 1s used and estimated from
F,2 = (R-AR) / (df-ny); (1.8)
(i) T3 = AR/nyG % 2 (df F(ot; ny, df-ny)) / ((df-ny) + F(es; 1o, df-ny)), (L9)

if the a posteriori variance factor is computed from 302 = R/df.

It 1s important to point out that the conclusions about outliers using the tests (I.7)
and (L.9) are identical, because expression (1.9) can be derived directly from expression
(L7).

As a special case, if only one outlier is suspected, say, the ith observation, matrix
A, in eqn. (1.5) is replaced by vector e;, which is an n-vector with a unit value in the ith
position and zeros elsewhere. Then eqn. (1.5) is reduced to

AR; = (TQ 12/ TQ1QsQ e, . (1.10)
In addition, if the observations are statistically independent, i.c., matrix Q is diagonal, then
the expression AR; is further simplified as

AR; = V%1, (L.11)
where q,; is the ith diagonal element of Q. and v; is the ith component of v. In the case

of one suspected outlier, the statistical tests (1.6), (1.7), and (1.9) become the w-test [Kok,
1984, Baarda, 1968]:

w; = VAR/G? 2 VT(e; 1, o0) = n{c/2) (L12)
the t-test [Heck, 1981} ‘
t; = VARY(G, D)y 2 VE(os; 1, di-1) = t(owr2; df-1) (L13)

and the t-test [Pope, 1976]

T = VARG 2 2 V(df F(a; 1, df-1)) 7 (dF-1) + F(or, 1, di-1)) = (a/2; dfy , (L.14)
respectively. (&,2); in eqn. (1.13) is calculated from

(3,2, =(Q1% - AR%(df—l) . (1.15)

The t-distribution is not very popular in statistics and no tabulated critical values are
available, but they can easily be calculated by comparing the expressions (1.13) and (1.14)




as

T(2; dfy = VAf- t(or2); df-1) / V(df-1) + t2(c/2; df-1) . (1.16)
Since the statistical tests (I1.7) and 1.9) are equivalent, so are the T-test and the t-test.

The difficulty in the detection of outliers lies in the localization of outlying
observations, especially when maltiple outliers are present. An efficient sirategy has been
developed, and the interested readers are referred to Chen et al. [1986].



APPENDIX 11
ASSESSMENT OF OBSERVATIONS

In the above discussions, the variance-covariance matriJ'c of the observations or the
weight relationship among the observations is assumed to be known. This, however, may
not be the case in many practices, especially in heterogeneous networks. Assessment of
the observations may have to be performed. The technique of MINQE (minimum norm
qQuadratic estimation) provides a tool to estimate variance-covariance components.

Consider the linear Gauss-Markoff model (I, Ax, C). Assume that the
variance-covariance matrix, C, can be decomposed as

C=%6T., (IL.1)

where Ti are known matrices, B, are variance-covariance components to be estimated.
Applying the MINQE principle, the 6 = (6,6, ..., Gk)T can be estimated from

8=S81gq, (I1.2)
where the (i,j)th element of matrix S is

s;=t{RT; R Tj} , {11.3a)
and the ith component of vector q is

g ={TRTRI, (I1.3b)
and

R=CHI-AATC 1Ay ATCY) (I1.3¢)

Since C is unknown, an iterative computation procedure has to be conducted. Let
Gi(o), Vi be the a priori value of 6;. then C in the above formulae is replaced by
K

Cep= x0T, .
1

From eqgn. (I1.2), 6 is estimated and used as a priori values in the second iteration. If the
process coatinues and the solution for © converges, the final estimation of 8 is
independent of the selection of a priori values Bi(o), Vi, This technique is called the
iterated MINQE. For a detailed theoretical discussion and application, readers are referred
to Chen [1983] and Chen and Chrzanowski [1985].





